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This paper deals with the problem of torsion of thin-walled rods of 

closed cross-section subject to transient creep and variation of the 

modulus of instantaneous deformation of the material. In its linear form- 

ulation, this problem has been studied in the paper ~1 1 by Arutiunian 

and Chobanian. At the same time, experimental investigations have shown 

that for a wide stress range (l/Z R < u < R, where R is the ultimate 

strength of the material) the linear relation between creep strains and 

the corresponding stresses is violated. 

The solution of the problem under consideration will be based on the 

nonlinear equations of creep theory developed in [ 2 1 , which are known to 

apply for a wide range of variation of stresses 0 ,( u < R for materials 

such as concrete [ 3 1 , wood [ 4 1 , solid soil [ 5 1 , phenolic plastics 

[6 1, etc. 

In view of the thin-walled nature of the rods, it will be assumed 

that the shear stresses are constant through the thickness of the wall 

of the section and that they act parallel to its middle surface. 

This paper gives a generalization of Bredt’s theorem on the circula- 

tion of shear stress in the case of torsion of prismatic rods of arbit- 

rary cross-section for the case of transient creep and varying modulus 

of instantaneous deformation. Further, using this theorem, it solves the 
problem of transient creep in a thin-walled rod with a closed cross- 

section for torsion by a constant moment M. It also considers the relaxa- 

tion problem of torsion of such a thin-walled rod subject to transient 
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creep obeying an arbitrary nonlinear law. The solution of this problem is 

reduced to the solution of a nonlinear Volterra integral equation of the 

second kind, a study and method of solution of which is given in Section 2. 

As an application of this method, Section 3 presents the solution of 

the problem of relaxation of a twisting moment in a thin-walled tube for 

a power law between the creep strains and stresses. 

1. Connection between strains and stresses for nonlinear 

creep. In the general case of a three-dimensional state of stress, the 

equations, * 
oi(t) in 

relating the strain intensity c !(t) and the stress intensity 

the presence of creep of the material and variations of its 

modulus of instantaneous deformation, will have the following form [ 2 1 , 

=i (0 
t 

Q tt) = 3C - s Gi (4 & [i]dr-\ F[~i(~)I~i(~) acF;r) dT 3G (7) 
(1.1) 

Tl +I 

Here C(t, r ) is the measure of the creep of the material for uniaxial 

stress, F(o,) is a certain function characterizing the nonlinear depend- 

ence between the creep stresses and strains for a given material which 

has been determined experimentally by tests on simple creep specimen and 

normalized to the condition F(1) = 1, G(t) is the modulus of instantaneous 

deformation in shear, r 1 is the age of the material at the moment when the 

load is applied, and t is the time. 

Under these conditions we have 

ti (t) = $)/(s~-iu)~+ (Q-t,)‘.+ (E*-Ex)2+ +((r,,‘+ rvr2+ 7,:) (1.2) 

Oi (t) = q J&- ‘J + (S”-- s,)“+ (or aJ2+ 6 (Qy2 + ‘zvz2+ k”) (1.3) 

Using the usual transformation formulas, relating the stress and 

strain components in a rectangular system of coordinates to the corres- 

ponding components in the system of principal axes and taking into con- 

sideration that the stress and strain deviators have identical principal 

directions at any instant of time t, from (1.1) we get 

l For the sake of brevity, X, y, z designations are omitted. 
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where w is the coefficient of transverse contraction of the material for 

the elastic part of the strain 

Q (l) = $ [ax (t) + cy (t) + 02 (ql, C’ (t, q = + C (t, q 

Here and in what follows, the symbol (x, y, z) indicates that the re- 

maining relations are to be obtained by cyclic rearrangement of x, y, z. 

l’hus, the relations (1.4) relate the strain and stress components in 

the case of a three-dimensional state of stress, including creep of the 

material, and variations of its modulus of instantaneous deformation. 

They have been deduced on the basis of the assunption that the volume of 

the body changes elastically, i.e. that there are no volune changes due 

to creep, a circumstance which has been confirmed by rnsnerous experi- 

mental studies. It has of course been assumed for this purpose that the 

coefficient of transverse contraction in creep is p = l/2 and that the 

measure of creep for pure shear o ( t, 7 ) is related to C(t ,7 ) by 

0) (t, 7) = 2 (1 + [L (t, r)] c (t, T) = 3c (t, q (1.5) 

It will be noted that the equations (1.4) describe a process of de- 

formation which includes ageing as well as heredity of the material, and 

which also applies to the case of active strain when the nonlinearity 
depends only on time. 

To describe processes of deformation without ageing of the material, 

the nonlinear equations of the theory of creep and relaxation were given 

by Rabotnov [ 7 1. and Rozovskii [ 8 1 . 

be 

For the sole purpose of simplifying the following calculations it will 

assuned that 

G(t) = G = const 

Ihen equation (1.4) takes the form 
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Let Fb ) have the form 

F (ai) = a + Pi’ (of) (1.7) 
where a and /3 are constant parameters and f*(oij satisfies the conditions 

a + B/‘(l) = 1, f’ (Uf) > 0, f” (Ui) > 0 (W 

‘thus the problem will be considered for an arbitrary nonlinear law. 

Obviously, if the parameter /3 in (1.7) is small, the function F(ai) 
will describe the creep curve of a weakly nonlinear material. 

Wstituting for Fbi) from (1.7) in (l.h), one finds 

-34 [u, (7) - a ($1 f’ [q (T)] ac;y’ ‘) d= 

It should be noted that, as has been shown by experimental studies 

1394 I, actual creep curves for a number of materials (e.g. concrete, 

wood, etc.) are in many cases approximated sufficiently well for high 

stresses (o > l/2 R) by power laws. In this case in (1.9) one may put 

f’ (Ui) = aim (m > 0) (1.10) 

2. The generalized law of Bredt. Consider a prismatic rod with 

arbitrary cross-section whose material is subject to creep and has a 
constant modulus of instantaneous deformation. Let the tiide surfaces of 

the rod be free from external forces and let forces which induce a con- 

stant torque M about the axis of the rod be applied to its ends. 

Place the origin of the rectilinear coordinate system x, y, z at some 

point of an end section of the rod with the Oz axis parallel to the 

generators. 

As in the case of torsion of elastic rods, let all stress and strain 

components except r Xt, z yz and y**, yyz vanish at any instant t, i.e. let 

and 

7x2 (!) = -2 - 0 (t) Y, 

where 0(t) is the angle of twist per 

E, = Etl = 9, = rxu = 0 (2.1) 

ruz (1) = s + fj (1) 2 (24 

unit length of the rod at time t,w(t) 
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is the displacement component along the axis of the twisted rod. 

Then equations (1.9), relating the strain components (2.2) to the 

corresponding stress components, in the presence of nonlinear creep take 

the form: 

where 

Qi (t) = 1’3 1/T.x-*2 (1) + $z’ (l) (2.4) 

‘Ihe equilibrium equations will be identically satisfied if, as is 

usual, we introduce 

WJ TX,, = --) --- 

aY 
cvz - 

a+ 
CYX 

(2.5) 

The stress function $ depends here only on X, y, t and on the boundary 

(I? of the cross-section of the rod satisfies the condition 

(2.6) 

since the side faces are free frun external forces. 

Let L be a closed curve lying entirely in the cross section* of the 

twisted rod. ‘Ihe curvilinear integral 

J’ = (7x& - y&y) (2.7) 
L 

will be called the shear circulation for the closed curve L. 

In (2.7) substituting the expressions for the strain components (2.21, 

and using the condition of single-valuedness of the displacement w(t), WE! 

obtain 

J’ = 20 (1) 0 (2.8) 

where R is the area of the region contained in L. 

. In what follows it will be sufficient to require that, the boundary of 

the cross-section of the contour, which in the general case may be 

multiple-connected, is sectionally smooth. 
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& the other hand, introducing the expressions for the strain compo- 

nents (2.31 and (2.71, and using (2.51, we find 

do ds } (2.9) 

Thus, by (2.5) and (2.91, we must have 

dT ds = - 28(t)GQ (2.10) } 

If the instantaneous modulus of shear deformation depends on time, 

in an analogous manner, using (1.4) and (2.71, we obtain 

= -- 20 (l) GSZ (2.11) 

For C( t ) = G and C( t, r ) = 0, i.e. in the absence of creep and for 

constant instantaneous modulus of deformation, the relation (2.111 leads 

to Bredt’s well-known formula for elastic rods. 

The integral relations (2.10) or (2.11) are generalizations of Bredt’s 

theorem on the circulation of shear stresses during the torsion of 

prismatic rods in a transient state of creep for an arbitrary nonlinear 

relationship between the creep strains and stresses and a variable modulus 
of instantaneous deformation. ‘lhis theorem, on the basis of its deduction, 

is the necessary and sufficient condition for the unique determination of 

the displacements in a twisted rod at any instant t with the help of the 

stress function +(x, y, t). 

3. Transient creep and relaxation in torsion of thin-walled 
rods with closed contours. 

1. Transient creep for constant torque. Consider a thin-walled 

rod whose cross-section is bounded by two closed contours rO and Il. To 

simplify the ensuing calculations, the thickness of the wall of the 

section h will be assumed to be constant. let the cross-section of the 

rod be referred to coordinates s, II, where s is measured along the middle 

line of the contour r and R is the normal to s. (Fig. 1). 
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Fig. 1. 

In view of the fact that the rod has thin walls, let 

a+ (1) 
‘t,, (1) = - 7 . mz = 0 

At the same time, from the equilibrium conditions we get 

T = Tcgz (1) /L = const (3.2 ) 

i.e. the flow of shear stress along the contour of the section at any 

time t is constant. 

It will be noted that the magnitude of the error associated with the 

assumption (3.1) is in the case of elastic rods of the order 1 + h/R0 = 1, 

where h is the thickness of the wall of the cross-section, and R, is a 

typical dimension of the section which is equal to the smaller of the 

following two quantities, the radius of curvature p of the middle line of 

the profile and its length 1. By (3.1) and (3.2), one has 

(J (q = y. (1 - “h’) (X3) 

where $I (t ) is the value of the stress function $(t) at the inner contour 

I’1 at time t, while at the outer contour rO one has $ll(t I-= Go (t ) = 0. 

J3y (2.4) and (3.3), one now finds 

4J (f) h (1) .- =-- 

an h ’ 

where R* is the area of the 

torque M is constant, then 

region bounded by the middle line Ft. If the 

+, = $ = r.onsl 
. 

(X.6) 

(3.5) 
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Using Bredt’s generalized formula (2.10) and the relations (3.4) to 

(3.6), for the angle of twist O(t) we obtain 

8 (t) = ~{~-t3[(1+~/*(~)]}C(t,r,) 

and, by (2.2) and (2.4), for the shear stress 

(3.7) 

(3.8) 

which coincides with the values of the shear stress corresponding to the 
elastic case. 

'l'hus it follows from this solution that the creep of the material only 

influences the deformation of the twisted rod, while the stress deform- 

ation remains the same as in the elastic, instantaneous case, 

On the other hand, it follows from the general equations of the theory 

of creep 12 1 that under conditions of linear creep the stresses in a 

twisted rod do not vary with time and that they coincide with the values 

of the stresses corresponding to the elastic instantaneous problem, while 

for nonlinear creep the stresses change with time and differ from the 

elastic stresses occurring in the rod at instant t when the twisting 

moments are applied to its ends. 

It appears that the contradiction between the last two deductions is 

explained by the fact that the first conclusion is approximate inasmuch 

as it assumes the character of the distribution of the shear stresses in 

the thin-walled rod. 

In other words, the stresses in the above case are elastic only within 

a small quantity of order h/Ro. 

As regards the strains, in the case of nonlinear creep, they are de- 

termined by (3.7) exactly, apart from small terms. 

2. Relaxation problem. At a certain instant t = r 1, let a thin- 

walled rod with closed section be twisted by the moment M(r 1 1, and then 

let its ends be clanped. As we know, as a consequence of creep, the 

stresses in the clamped rod will in time subside. 

Ihe relaxation problem of torsion consists of the determination of the 

law of variation of the stresses or the torque in time as a function of 

the creep properties of the material and the initial twist of the rod: 

6 (TJ = $$ 

Using Bredt’s generalized formula (2.1;) and the relations (3.41, 

(3.61, (3.8) for the determination of r,,(t), we obtain the following 
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integral equation 

K..(f)-.[ C,&)K(r,ddr-_Bj f(~‘Z(~))K(t,~)tl(~)d~=g(~l) (3.9) 

71 *I 
where 

K&T) = 3G yy) , g (3) = 2% (71) GQ, M (d 
1 =2hn, (3.10) 

‘Ihus, the solution of the problm of relaxation of stresses in the 

torsion of thin-walled prismatic rods of closed section, in the presence 

of transient creep obeying an arbitrary nonlinear law, has been reduced 

to the solution of the nonlinear Volterra integral equation of the second 

kind (3.9). 

Having found the stress raz(t) frm (3.91, the relaxation of the 

torque M(t) is determined by (3.8). 

In conclusion, it will be noted that, if the twist 8 of the rod is 

not constant but is instead a given function of time! 8 = 0( t ), then the 

relaxation problem in so general a fomulation leads to the solution of 

the same integral equation (3.91, the only difference being that its 

right-hand side will no longer be constant but a given 

A method of solution and a study of the equation (3.9) 

case is given in the next section. 

4. Method of solution of the basic integral 
its study. ‘Ihis section gives the solution and study ._ _. 

function of time. 

for this general 

equation and 
of the basic non- 

linear integral equation (3.91, which may for convenience be written in 

the form: 

t 

u (t) - a K (0) u (K) dr - B \ K 0,~) f [u (~11 dr = g (q (4.1) 

0 

where 

f (28) = z&f’ 2e (t; CR* 
(4.2) 

In the integral equation (4.11, 0 < t, r < + m, g(t) and K(t, r 1 are 

continuous functions, a, /3 are numerical parameters and f(u) is an 

analytic function (a bound on which will be established below). 

Let I?( t, r , a) be the resolvent of the linear Volterra integral equa- 

tion with Kernel K(t, r 1, when the equation (4.1) may be replaced by an 

equivalent equation of the foxm 
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U(r)=h(r)+p~N(t,~)lIu(r)ldr 
0 

Here 

h(t) = g(t) + aiR(I,r,a)g(4dT 
0 

The solution of (4.3)will be assuaed to be analytic in /3, 

attempt will be made to solve it by expanding it in a Taylor 

powers of /3. let 

C+J uk tf) 
u (t, P) = 2 FBk 

k==o 

O3 @k tt) 
~(tlB)=II~(t,P)l=~o~B* 

where obviously 

(4.3) 

(4.4) 

andan 
series in 

(4.5) 

(4.6) 

(4.7) 

Substituting (4.5) in (4.3), taking (4.6) into consideration and can- 

paring coefficients of the smne powers of /!I, one finds 

ro(r) = h (t) (4.81 

Using a known formula for the n-th derivative of a complex function, 

it may be proved that 

(4.9) 

where the sum extends over all integral nonnegative solutions of the 

equation i, + 2i, + 3i7 t . . . + rain = n. 

Substituting (4.9) into (4.8), we obtain 
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(n =. i, + 2i2 + . . . + ni,) 

Vn+l = jJ.illi.! .I. i,? (H (t, T) (f!+;f’t . .(?i$~“fi.+i~+-.+i.) (h (r)) dr 
(n + I)! 

n ,I 

(II = il + 2i2 + . + ni,,) (4.10) 

Formula (4.10) offers the possibility of determining successively all 

u,(t), whence in particular follows the uniqueness of the solution, 

analytic in 6, of the equation (4.3) or (4.1), provided such a solution 

exists. 

In order to prove the existence of such a solution, we must obtain an 

estimate of 1 v,,(t) 1 which depends on n uniformly with respect to t in 

some’ interval. LPt there be given some fixed interval of time 0 < t < 7’. 

With 

max ( K (t, 7) 1 = K7., maxjR(t,T,a)I = BY,, HT = h-,[H., (4.11) 

(OGt, -rGT) 
inf h (1) = a,~‘, sup h (t) = !Ir (0 < t < 2’) (4.12) 

we obviously have 
lH(t,s)(,<H~it-~( (4.13) 

It will now be assumed that f(u) is determined in aT 6 u < b, and it 

has three derivatives of all orders which satisfy the inequalities 

1 j(p) (u) 1 < h op!u” (p=O,l,2,...) (4.14) 

where a and K, are constants. Then from the recurrence relations (4.10), 

taking into consideration (4.14), we get: 

Letting R, = aK,H,, it will now be proved that for all n 

(4.16) 

where An is a constant which only depends on n. 
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‘lhe inequality (4.16) will be proved by mathematical induction. Ltting 

n= 0 in (4.10), we obtain 

i.e. the inequality (4.16) is true for n = 1. 

It will next be assumed that the inequality is true for k .< n, and it 

will be shown to be then true for k 
into (4.15), *R find 

= n + 1 likewise. Sbstituting (4.16) 

1 u,+1 (t) ( Q (n + I)! K,H~ 2 (i1 + i2 +. 1 : ;,t L)! 
i,! io! 

f (t _q &i,+2*r+-.+n’” x 

XT 
W+~i*‘..+ninb[+)r. . . . i%jFndT = 

_ (n f I)! R;+’ (il + ii + . + i,)! 

(1 2 n (Zn + 1) (2n + 2) il! . . i,! 
(.qy~)i’ . . . (+$” t2”+2 = 

i (n+ l)! (il $ i2 + . . . + i,)! 

= Y- (2n + l)(Zn + 2) 1 2 
_,l,‘il 

i,! i2! i ! n (1-i ) ($y’ . . . (?)y R;+v+2 
n 

i.e. 

(n -~- iI + 2i2 + . . -+ ni,) 

where 

A,+, 
I Ql+1 (I) / < -y- &)n+lp(~‘+l) 

(II -: il + Zip + . . . + ni,) (4.17) 

‘lhus the inequality (4.16) will be true for all n > 1, provided the 

constants An are determined from the recurrence relations (4.17). It 

will be important for what follows to obtain an estimate of the absolute 

constants A,,, determined uniquely by (4.17). 

For the sake of convenience, let B, = A&/k! when (4.17) gives 
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(n -: il + 2i2 + . . . + ni,j (4.18) 

which is again a recurrence relation, uniquely determining all the 

constants B,(k > 1). Obviously all B, > 0, and if we were to replace in 

(4.18) B, .by C, > B,$k = 1, 2, . . . , n), or to increase the coefficients 

of B,‘lB *2 2 , l **, B,‘n 9 this would only increase the value of Bn+ 1. 

It will now be proved that one may select positive constants A and a,, 

such that for all k >/ 1 

Ijk < Aa,k (4.19) 

Let it be assumed that A and a0 are such that the inequality (4. lo) is 
fulfilled for all k < n. It then follows from (4.18) that 

(il + i2 + . . + in)! 

A 
i,+it+...+i, 

(n -- il + 2ii + . + nin) 

lhe second sum in (4.20) extends over all nonnegative solutions of 

the system of equations 

i, + 2iz + 3& + . . . + ni, = n (4.21) 

il + iz + i3 + . . . + i, = m (4.22) 

The inequality (4.20) will be increased if the equation (4.21) is dis- 

regarded, the second sumnation extended over all nonnegative solutions 

of the equations (4.22) and the result then divided by the number of all 

possible rearrangements of n elements, i.e. by n!, since the omitted 

equation made such permutations impossible in the same way as equation 

(4.22) made them possible. Thus 

where use has been made of the fact that 
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2 ill m! ‘n! . . .I (m = il + ir + . . . + i,) 
m 

is knorm to represent the 

a 2 + . . . + a,)” and to be 

Hence we arrive at the 

sum of the coefficients in the expansion (a, + 

equal to ra”. 

inequality 

If we were 

natural n the 

Bn+1 G ( (g‘y$ n! (2n + :, (2n + 2)) %Jn+l (4.23) 

to find that the selected A and a0 was such that for all 

inequality 

(nA)n+l- 1 1 

a0 (nA - 
‘A 

1) n! (Zn + 1) (2n + 2) * 
(4.24) 

was fulfilled, it would follow from (4.23) that for such A and a0 the in- 

equality (4.19) was also satisfied for k = n + 1, i.e. for all natural n. 

It will now be shown that for the inequality (4.24) to hold true, the 

constants A and uO must satisfy the inequalities eA < 1 and 2 a,, A > 1. 

In fact, the latter is obtained irnnediately from (4.24) for n = 0. 

To prove the inequality eA 6 1, use will be made of Stirling’s asymp- 

totic formula 

from which for large values of n there follows 

(nn)n+l- i 1 (nn)” 1 
a, (nA - 1) n! (n2 + 1) (2n + 2) 

~ 
a0 V/me-“nn (2n + 1) (2n + 2) 

or 

(n.4)*+l- i I (erly 

a,W-1) n!Pn+1)(2n+2)- a,V~2xn(2,r+~)(k+2) 
(4.25) 

It follows from (4.25) that for Ae > 1, the inequality (4.24) may not 

be satisfied for sufficiently large n, while for such n as Ae .G 1 this 

relation is 0(n-5'2). Obviously the best choice of A and a0 is A = e-l, 
a0 = l/2 e. Finally, it will be proved that for this choice of the 

constants A and a0 checked for n = 0, and sufficiently large n, the in- 

equality (4.24) holds true for all n without exception. For n = 1, 2, the 

inequality is easily verified direct. It remains to be proved that for 

alln >3 

(n,e)n+l- 1 

(n+1)!(2n+I)(n,e-l)61 
(4.26) 
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By a known approximation [ 10 1 for n! we have 

n! = 1/2G--nnn 1 + 0 
( V 2m > 

. 

Hence we find (n + l)! > 4e-(“+l)(n + l)“+ ’ 

lWl<l 

for n >/ 3, and therefore 

(n I 4 n+1_1 g-t1 ,++I), 

(n + I)! (br + 1) (n/e - 1) < - 4e (*+l) (n + l)n+’ (2n + 1) (n - e) <&<I 

‘lhe inequality (4.26) is thus true for all natural n, and it follows 

from these inequalities by virtue of the above statements that the in- 

equality (4.24)) and therefore also (4.191, hold true for all n, provided 

we put in A < e-l, a0 > e/2. 

It has now been proved that for all natural n 

B, < a(-$ (4.27) 

whence, recalling the notation An = n!B,, the inequality (4.26) may be 

written in its final form 

1 fe \nn! 
I un (q I < e jTL) 

n 2n 
a R,t (4.28) 

It follows from the estimate (4.28) that the series (4.5) for 0 < t < 

T is maximized by a series with positive terms 

(4.29) 

which obviously converges as a geometric sequence, so long as the para- 

meter /3 satisfies the inequality 

(4.30) 

Thus, if condition (4.27) is satisfied, the series (4.5) converges 
absolutely and uniformly inside the circle (4.271, uniformly with respect 

to t in the above stated interval, and represents the solution of the 

basic nonlinear integral equation (4.1). 

In conclusion, it will be noted that from a practical point of view a 

peculiarity of the above method of solution consists in the fact that 
for its construction we may take the solution of the corresponding linear 

creep problem as the first approximation, just as in the known solutions 

[ 11, 12, 13 1 of the problem of nonlinear creep theory by the method of 
successive approximations, the solution of the corresponding elastic 

problem may be used as the first approximation. In fact, thanks to this 

feature, the rate of convergence of the successive approximations is con- 
siderably increased. 
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5. Relaxation of torque in a thin-walled rod of tubular 
cross-section. Let the thin-walled rod of tubular cross-section 

(Fig. 1) at some instant t = r1 be twisted through the angle 

which will remain unchanged in what follows. Let the creep property of 

the material of the rod be characterized by [ 2 1 

(1 (t, 7) = cp (7) [l - c-+--r)] (5.1) 

where rj ( 7 ) is some monotonically decreasing function characterizing the 

creep of the material as a function of its age 7, and y is a constant 

parameter. lhen, by (4.2), the right-hand side ivld the kernel of the 

integral equation (4.1) will be 

K (t, 7) =- 3G {y’ (7) - e--y(l--T) [$ (7) - ry ($I), fi (7,) 1 ‘E&) (5.2) 
l 

The resolvent R(t, 7, a) of the linear Volterra integral equation with 

the kernel K(t, 7 ) is determined by [ 2 1 

R (t, T, a) = 7 - Y,’ (T) -j- [Y,” (T) + Y,” (7) - 77,’ (r)l e’n(~) \ e--n(x) dt (5.3) 
. 
T 

where 

As has been shown in [ 2 1 , one may write 

where A, and CO are constants, characterizing the change in the amount 

of creep of the material in its early and late stages respectively. 

Further, let the nonlinear dependence between the strains and stresses 

in (4.1) be expressed by the power law 

j (TSZ) j’ (%) -,*: L:” (I)/ > I) (5.8) 

Then, if in the general solution (4.8) of the basic nonlinear integral 

equation (4.1) we restrict ourselves to the first two approximations, 

using (4.4), (4. S), (4.8) and (5.6), we get 

(5-i) 



Torrion of thin-walled rodr rith clorcd cross-section 1105 

and the incomplete Gamma function has been tabulated. 

(5.8; 

It should be noted that the first term HO (t, r I ) in (5.7) represents 

the so-called influence function, characterizing the law of decay in time 

of the initial elastic stresses in the twisted rod, owing to the influence 

of linear creep, while the second term of this expression accounts, with- 

in a quantity of order /9 2, for the influence of the nonlinear creep on 

the law of decay of these stresses. 

Substituting the expression for the stresses rsz(t) from (5.7) in 

(3.5), we find a formula for the determination of the relaxation of the 

torque: M(t) 

M (t) - =: H,,(f, Tl) + p [*]‘“-’ j< 
M (71) 

Similarly, if in the general equation (4.8) we limit ourselves to 

three approximations, for the relaxation of the twisting moment we find 

the following formula: 

As an application, consider the problem of the relaxation of the 

torque in a thin-walled concrete rod of box-shaped cross-section (Fig. 2) 
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for the following initial conditions: 

,, :7 15 C. 11=2 E. 

_I, ~. 4.82.10-; (.I1 0.9.111-z 

:ic 2. LIP kg cm2 ,,1 = 2 

T, “S days 

Fig. 2. 

For these conditions, consider the four cases corresponding to the 

following values of the nonlinearity parameter: (3 = 0, p = 0.001, p = 

0.01, p = 0.05. 

Obviously, the value /3 = 0 corresponds to the relaxation problem of 

torsion in the presence of linear creep and it has been considered in 

[l I, while the remaining values of /3 correspond to relaxation problems 

for transient creep with quadratic nonlinearity. 

lhe ratio M(t)/M( rl) will be called the decay coefficient of the 

torque. The value of this coefficient has been tabulated here for diffe- 

rent values of time t and the nonlinearity parameter fi. It can be seen 

from this Table that the relaxation process for the torsion of thin-walled 

rods of closed section in the presence of transient creep is strongly 
activated by the presence of nonlinearity (for example; for @ = 0.5, the 

decay coefficient of the torque is two-thirds of that in the case of 

1 inear creep ) . 

TABLE 1. 

Values of the decay coefficient M(t)/M( 7 ) 

p=o 

t : 0.484 0.301 
180 0.301 
360 0.301 

Second approximation Third approximation 

p=o.oO1 1 p=o.ol 1 p=o.05 b=o.ool j p=o.ol 1 p=o.oSe 

0.4338 0.4546 
0.30~J1 0.2009 
0.2’JYY O.ZYOG 
0 . 2YY8 0.2YO5 
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It also follows from this Table that for variations of the nonlinear- 

ity parameter in the interval 0 < /3 < 0.01 (which comprises the range of 

variation of /3 in the experimental creep curves of concrete) we may re- 

strict consideration in the general solution (4.8) of the basic equation 

to two approximations, since we obtain sufficient accuracy thereby. 

BIBLIOGRAPHY 

1. Arutiunian. N. Kh. and Chobanian. K.S., 0 kruchenii prismaticheskikh 

strezhnei sostavlennykh iz razlichnykh materialovr s uchetom 

polzuchesti (On the torsion of prismatic rods made of different 

materials exhibiting creep). Izv. Akad. Nauk SSSR Otd. Tekh. N. 

No. 6,, 1956. 

2. Arutiunian, N. Kh., Nekotorye voprosy teorii poisuchesti (Certain 

Probleus of Creep Theory). Gostekhizdat, 1952. 

3. Vasil’ ev, P. I., Nekotorye voprosy plasticheskikh deformatsii betona 

(Certain problems of plastic deformation of concrete). Izv. VNIIC 

Vol. 49, 1953. 

4. Sogoian, A. S., 0 nekotorykh zakonomernostiakh polzuchesti drevesiny 

(On certain laws of the creep of wood). Zzv. Akad. Nauk Arn. SSR 

Vol. 11, No. 2, 1958. 

5. Meschian, S. R., Eksperimental’noe issledovanie zavisimesti mezhdu 

napryazheniyami i deformatsyami polzuchesti sviznykh gruntov (An 

experimental study of the relationships between the creep stresses 

and creep strains in solid soils). Dokl. Arr. SSR Vol. 24, No. 2, 

1957. 

6. Ross, A.D., The Effects of Creep on Instability and Indeterrinacy 

Investigated by Plastic Models. 1946. 

7. Rabotnov, Iu. N., Nekotorye voprosy teorii polzuchesti (Certain 

problems of creep theory). Yea t. MGY No. 10. 1948. 

8. Rozovskii, M. I., Polzuchest’ i dlitel’ noe razrushenie materialov 

(Creep and long range destruction of materials). Zhur. tekh. fis. 

Vol. 21, No. II, 1951. 

9. Kachanov, L. ki., Nekotorye voprosy teorii polzuchesti (Certain Prob- 

leas of Creep Theory). Gostekhizdat. 1949. 

10. Goursat. E., Kurs rateuaticheskogo analiza (A Course in Matheratical 

Analysis). Vol. 1. ONTI, 1936. 



1108 B.A. Alrkrondrian, N.Kh. A?utionian and Y.11. Yanukian 

11. Roxovskil, Y. I., Polusimvolicheskii sposob resheniia nekotorykh zadach 
teorli polzuchesti (A semi-symbolic method of solution of certain 
problems of creep theory). 1s~. Akad. Nauk Arm. SSR Scria fiz-mot. 

nouk No. 5, 1958. 

12. Rozovskii, Y. I., 0 nelineinykh integral’nykh uravneniikh polzuchesti 
betonnoi tsilindricheskoi obolochki, nakhodiashcheisla pod vneshnlm 
davleniem (On the nonlinear integral equations oi’ the creep of 
cylindrical concrete shells under the influence of external press- 
ure). 12~. Akod. Nauk SSSR OTN, NO. 9, 1958. 

13. Arutlunlan, N.Kh. and Yanukian. Lg., Polzuchest’ sostavnykh tsillnd- 
richeskikh trub (Creep of composite cylindrical tubes 1. Izv. Akod. 

Nauk Arr. SSR Scria fiz-mt. nouk, Vol. 10. NO. 6, 1957. 

Tranalotcd by J.R.Y.R. 


